
AD-AO91 062 FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OH F/6 9/2
PROGRAMMING AND PROVING CORRECTNESS OF THE SCANNING ALGORITHM W--ETC(U)
SEP 80 J WIEDERMANN

U~NCLIED FTU I EDFTSZD(RSTG626 NL

UM 1

I EE~c

1 .8

1111Lt _L4

FTD-ID(RS)T-o626-80

o FOREIGN TECHNOLOGY DIVISION

PROGRAMMING AND PROVING CORRECTNESS OF THE SCANNING

ALGORITHM WITH BACKTRACK

by

Juraj Wiedermann

E ELl~~

OCT 3 11980

LLI

80 10 219 114

FTD-ID(RS ':-0626-30

EDITED TRIANSLATION

TD-ID (RS) T-/62 /J1Se

MICROFICHE NR: FTD-80-C-OO'1029

J ROGRAMMING AND ;ROVING ' RRECT74ESS OF TH
-SCANNING ALGORITN4 W4ITH BACKTRACK

JurajW i e de rna nn

+Q 0 4Lak W L
Sgew.: Informacne Systemyj- Nt. 4, IFi'

-j:7 -.3k :L J p-;-,371-382.
Country 0f origin:* ?ftev
Translated by: SCITRAN &O61t

F33657-78-D-619 R's MkbZ
Requester: FTD/TQT MTIAppr'oved ffor public release; distribution 1.bmownoed
unlimited. justification

THIS TRANSLATION IS A RENDI1TIONI OF THE 01I1g.
NA. FOREIGN TEXT WITHOUT AN4Y ANALYTICAL OR

EIOILCOMMENT. STATEMENTS OR THEORIES PEAE Y
ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE

* ANDDO NOT NECESSARILY REFLECT THE POSITION TRANSLATION 0DIVISION
OR OPINION OF THE FOREIGN TECHNOLOGY DI- FOREIGN TECHNOLOGY DIVISION
VISION. WP.AFB, OHIO.

-IDRS)-066-04 DteJ6OA gp 9j v

PROGRAMMING AND PROVING CORRECTNESS OF THE SCANNING
ALGORITHM WITH BACKTRACK

Juraj Wiedermann
Computer Research Center, Bratislava

Abstracts The systematic construction of a program in which its cor-
rectness is demonstrated in parallel to the development of the program
is explained in the example of the scanning algorithm with backtrack.
The total correctness of the program is proven by the method of inter-
mittent assertions.

Key words: Programming; Program correctness; Systematic construction

of programs; Scanning algorithm with backtrack.

1. Introduction

When solving combinatorial problems in practice, we frequently
encounter a situation in which we have a given (finite) set A of candi-
dates to resolve the problem and we must choose from this set those can-
didates that satisfy the specific conditions 2 for the solution. This
means that the solution to our problem is the set B = Ixf Aj p(x)1

We will call the algorithms that solve this problem the scanning
alaorithms since to find all the solutions, they must scan the entire
set of candidates (on the assumption that we do not know any of the re-
lationships between the elements in set A).

Later on, we will look at a simple program flow chart which is the
solution to a given problem and we will prove its correctness.

The scanning problem as we have defined it in the introduction is
quite universal in many situations. Since we are limited here to a spe-
cial problem where we need not scan the set of candidates by the exhaus-
tive technique of "one after the other" and can sometimes "omit" certain
elements because we know that they cannot be the solution to the problem.
We will call these algorithms scanning algorithms with backtrack and
using them, we will look at a universal programming chart and prove its
total correctness.

We will prove total correctness with the method called intermittent
assertions z67.

Since the scanning algorithm with backtrack is a special instance

of the universal scanning algorithm, we will see that this function is

also applicable to proving the correctness of these algorithms; proving

the correctness of the scanning algorithm with backtrack is a special

"refined" proof of the correctness of the universal scanning algorithm.

With this, we also hope to show at the same time that the method
1J

of intermittent assertions is applicable for the so-called systematic

construction of programs where its correctness is proven in parallel
to the development of the program.

In the conclusion we will look at the problem of "27 cards" as
an application of the universal scheme of the scanning algorithm in a

concrete example.

2. The universal scanning alzorithm

The following program which solves the universal scanning problem
is simple and obvious: prOgmm SEARCH;

begin
input (H);

start: B-,;
loop: while H * 0 do begin

x *,- H; H:-H-x);
lip(x) then B:-B U Jx) fi

end,
finish: output (B)

end

The instruction "x .- H" means "select an arbitrary element from
the set H and assign the variables of x to it".

At the beginning, this program "opens" the set of candidates into
sets (variables) of H and so long as the set H is not an empty set, it
selects one element after another and tests whether this element is or
is not the solution; if not, it then moves on to the set B.

The following theorem explains the total correctness of the SEARCH

programs
THEOREM I If at times H = A at the start signal, then sometimes

B Ix ax At p(x)) at the fiis signal.
We will note that this theorem does, in fact, explain the total

correctness of the SEARCH program; that is, when the entry condition at
the beginning of the program is such that the program ends (the theorem
implies that the solution to the program is sometimes achieved at the
finish signal which is at the end of the program) and, consequently, the
output condition is fulfilled at the close.

In order for us to be able to use the method of intermittent asser-

tions, we must generally look through each cycle of the program at the
validity of any lemmas that describe the effect of that cycle and imply
(generally in combination with other ler as) the validity of the main
theorem which explains the total correctness of the program.

The behavior of a single cycle in our program is described by the

following lemmas
-2-

I

LEMMA 1. If when H = Hand B = B' at the start, then when H =

and B = B'Uxw H'I p(x) at the start loop.
The assumption H = H'and B = B' are lemmas that enable us to look

for sequential values in the sets H and B at the conclusion of the lemma
where the values of H and B can change in the interim.

Stated informally, Lemma 1 asserts that the cycle with the start

loop is sometimes the end - the original value H/ of the set H sometimes
changes to the value H = and consequently, the set ix H'i PxI
increases towards the original value B' in the set B; that is, all the
solutions from this set (H') that we have not "disproven".

Lemma 1 is proven with full inductive regard for the value of the
set H'

Let H= H" and B = B" at times in the start loop;

1. Let H' = 0. Then, it holds true that H = 0 and B = B' U ixrs 0 (x =
= B" at the start loop which must be proven.

2. We will assume that the lemma is correct for all values in the set
-F C H'.

3. Since H = H' y 0 holds after one cycle pass 0 there is also an-
x eH° such that H = H' -lx) and B = B" U Y . - Px1p(Y)l
in the start loop. Therefore, H H' and we can use the in-
ductive assumption so that when H = 0 and B = B' U |y Sx] I p(y)I U
U ly£9 H'- x1jp(y)) = B'U1 [ye H' I p(y)j in the start loop which
proves the lemma.

It is essentially true that a program as simple as the SEARCH pro-
gram might never be proven in practice. We make special note of this

in order to show in a simple program how total correctness of a program

is proven by the method of intermittent assertions as since later on

in proving the correctness of the scanning algorithm with backtrack, we

can use some of the concepts and experience acquired by proving the cor-

rectness of the universal scanning algorithm.

2. The scanninp, alaorithm with backtrack

On the assumDtion that all elements in the set of candidates A

are explicitly given (we are not aware of the order or how they are

generated), the preceding program for universal scanning essentially

has no effect whatsoever. Its memory and temporal make-up are unsuitable

- we must retain the entire set A in memcry at one time and hold on to

all its elements. If the set A is large (as would be the case in com-

binatorial problems) the entire program is intolerably inefficient.

It is often the case, however, that the set A is not explicitly

given; that is, that not all its elements are generated one after the

other or that we know the order of how all the elements are generated.

We will assume a set of A = A1 x A2 X ... X An; the solution

to the scanning problem then is all the n-tuples (vectors) of R-(x1 ,x2 ,

..Xn) e A so that p(i) is valid.

Then we are able to program the scanning algorithm in an essential-

ly more effect manner (at least, for the present, from the memory stand-

point); we need not remember the entire set A all at once but only the

individual components A, . A2,...An of the Cartesian product and that all eie-

ments of the set A are generated sequentially from them. It is simplest

to program how n is tested against itself in insert cycles where a single

component of the vector i is generated in each cycle as well as during

the innermost cycle where the entire vector i is generated which is the

solution: prgoam SIMPLEBACKTRACK;

"egin
input (X,.... X.);

start: H': X,; B: - 0;
whlMe H, 0 do bogn

, '-UH; HH,:-(x.);

while H. 0 do begin
x .. 3H; Hz;-H,-(x);

H.: -X.;
whle H.* 0 do boln

x. - .; M.:=-H-(x.);
eI x.xBx, .x

Owtn B: 8 U (X ,),

end

end
end;

finish: output (B)
end:

Thus when X, = A1 , X2 - A2 ,...,Xn = An at the start signal, then

it can be proven that it will be true that B C |, Al p(E)J at the
finish signal.

The correctness of this progam cannot be proven, however, since

this program is still unattractive. Aside from the fact that we must

know the concrete value of n2 in advance in order to make up a program

at all, it is also inefficient from the time standpoint as is the pre-

ceding SEARCH program for universal scanning.

The reason for this time inefficiency is that in the i-th cycle,

---

1 i n generates further components xi of the vector 3 without con-

vincing us that the currently discovered components xl,...xi_l can be

supplemented in any solution at all.
Let us name the predicates p(x1 , ... xi) such that p(Xl,...x n)

~ p(x 1 Xi) where i = 1,...,n-I and satisfaction of the predicate

p(xl, ... xi) is a necessary condition for the predicate p(i) to be

fulfilled at all.

What we arrange in this sense is the preceding program and we

roll" the cycle back to itself and we get the following program:

po BACKTRACK;
input (X,... X.);

start: H,:X,; B:*0; h=l;
LI: whi ic I do beWn
L2: while H,'0 db begin

x, i:. H, -(x);
If p(x,.... X)

thenif i=n
then B: - U {(RA
else i:-, i+; fH,:=X

fl

end;
i:-ni-I1

end;
finish: output (8)

end

From this program, we can see that after generating one component

of xi, we can predict all that fullfill the necessary condition of the

solution - the predicate p(xl , ... xi) and only when it has been ful-

filled (and not just another solution) do we "Plunge" into a deeper cycle;
otherwise, it is apparent that no choice of xi+ 1 ,... xn can fulfill the
condition p(x) - this means that all n-th which begin x1 , ... xi can be
omitted from the scanning process - which we get so that we proceed
with selection of another xi 4 Hi.

If we exhaust all the elements at the i-th level, then we select
again at the i-i level and continue on through the generation of the

components xi-I at this level. From there, we come back to the algorithm
- the scanning algorithm with backtrack.

We prove the total correctness of the BACKTRACK program as we prove
the validity of the following theorem

THEOREM 2: If X = A at the start signal, then B +4Aj p(0)
at the finish signal.

-5-

Ie can prove Theorem 2 by means of the following lemma:

LEMMA 2. When Hi = H!, B = B and 1 6 i = i' n at the L2 signal

then Hi = 0, B = B'LI fg lxIi X ... X xi. 1 X i H! XilI ... x j X

p (j~ and i = I at the L2 loop.

When the assumption X = A of Theorem 2 is fulfilled at the start
signal, we also get HI = A,, B = $ and i = 1 at the L2 signal so that

according to Lemma 2, when HI = 0, B = I Al p (k)) and i = 1 at
the L2 signal. Since Hi = 0, we can drop the cycle with the L2 loop,
the value of i will drop by one and we can proceed to the Li ei.gnal

with a vaLue of i = 0 and, from there, on to the finish signal at which

the output condition of B = { Al p(3)j which is the assertion of

Theorem 2 remains valid.
We can see here the similarity between Theorem 1, Lemma 1 and

Theorem 2 and Lemma 2. Theorem 2 and Lemma 2 merely reflect the "more

refined" structure of the set A = A1 9 ... A An .

• e can offer a proof of Lemma 2 with an inductive view of i'.

1. When i = n, let Hn = H' and B = B' at the L2 loop. Looking in-
ductively at the magnitude of the set Hn , we can show the validity

of the lemma in the following case:

1.1 If Hn = 0, the fact that the assertion of the lemma is fulfilled
at the L2 signal is trivial.

1.2. We will assume that the lemma is valid for all subsets Fn C Hn

1.3. If Hn = Hn ' 0, then it is true after one cycle pass at the n-th
level that:
there exists an x. a Hn such that Hn = Hn - tXnl, B = B

U [2' ra P =x ~ j)p B .Since Hn - txnlC. H'n, we can
use the inductive assumption 1.2 so that when Hn = 0 and B =

BOLjj C*x1' X ... V-f x._.1) X (4f - 1xnj)jI (m)=
B'Uf , x-_ ... X jxn- 1) Hn'I p()1 and i = n at the L2 signal;
Q.E.D.

2. We will assume that the lemma holds true for all j, 1 & i j A n.
3. Looking inductively at the magnitude of the set H!, we can show the

validity of the lemma for when i a i' also.

Therefore, let Hi = Hi, B = B' and 1& i = i'4n at the L2 signal.

3.1. If HO = 0, the lemma is, of course, fulfilled.
3.2. Je will assume that the lemma holds true for all subsets 7 Hi .

3.3. When Hi = Hi*/ 0, then after the first two instructions in the

cycle it holds true that there exists an xiG H' so that Hi = Hi

We can further break it down into two cases:

a) if it is not true that p(x1 ...xi), we can go back to the L2

signal with a value of i = i , H = Hi - jxij and B = B'U [y . .

XX X Xi+X ...ii X n j)P 9 = B" = BUC. From the assumption that r

•. is not true, it follows that no n-tuples beg n-tntg at x ... ,x i

can be the solution; this means that the set C = 0 and that we can use
it without everything to add to the set B . Since Hi - x C Hi, we

can use the inductive assumption 3.2 so that Hi 0 and B=B'ULGC (x
X)...X xi- x (Ht - Jxi)XXi 1K ... Xnj p(q)J at the L2 signal and

also i = i at the L2 signal.

We can zet a confirmation of the lemma by applying the preceding

expression to the set B.

b) If p(xi,...x i) holds true and since i< n, the value of i in-
creases by one for a value of j = i + 1, we also reach the L2 signal
with values of Hj = X j, B = B' and 14 j = i + 1 J n. Therefore,
1 i ' j 4 n according to inductive assumption 2 when H; = B, 3 = B"

Uf fcfx Y X . .. X XnI p(y)7 and j = i + 1 at L2.

Since Hj = 0 at L2, the value of j is reduced to the original value i
and since i >1 1, we move from the Li signal to the L2 signal with Zthe

values7 i i' , Hi = Hi - [xil and B = B*. Since Hj - [xi) C Hi , we

get a confirmation of the lemma according to the inductive assumption
3.2 similar to that in the preceding situation a).

By proving Lemma 2, we have completed the proof of the total cor-
rectness of the BACKTRACK program.

On its own level, this program represents an effective flow plan

for the scanning algorithm with backtrack. This plan also provides for
a relatively direct "approach" to solving a concrete problem. Therefore,
it is necessary only to find (and program) the correct interpretation
of the set A and the predicate p. The effectiveness of the resultant
program ie critically dependent on the effectiveness of running a test
of if p(xj,...xi) then

It is apparanent that the sooner we recognize that some partial

solution of xl,...xi cannot be expanded (completed) to a full solution,
the more elements of the set A we can eliminate all at once from the
scanning process and the faster we will achieve the goal.

From the nature of the combinatorial problem to be solved, we can
sometimes see that a simple transformation from one solution to the
problem can result in some other solutions (the solutions are isomorphous).

-7-

For this reason, it is advantageous not to generate these other iso-

morphic solutions and to "skip over" them. The test for this can also

be hidden in the predicate p. Further detailing of this problem as
well as the questions of effective implementation of scanning algorithms

with backtrack is the subject of reference Z17.
4. The problem of 27 cards

The problem of 27 cards is as follows Z27: we have a playing

board with 27 fields and 3 sets of cards with values of from 1 through 9.
Our job is to find all the possible positions of all the cards on the

game board so that between every two adjacent fields on the game board
on which there are cards of some value k, there are cards to the right
of the field with some other value.

The exercise may obviously be generalized to a problem of 3n cards.

Let xi stand for the position of the first card of three with values

of i, i = 1 ... n on the game board. From the statement of the problem

it follows that the position of the first card also determines the posi-

tion of the other two cards - they must be in positions xi ' i 1 1 and
x i + 2i + 2 and also that 1_4 x i _4 3n - 2i - 2 as otherwise, some card
would fall outside the playing area. The problem of our sets Ai then

is the playing intervals <. 3n-2i-2> where i = 1, ...n.

The predicate p(xl,...xi) is now interpreted as correct so long as
it places cards with a value of k in the positions xk. xk + k P l and

Xk + 2k + 2 given that k = 1,...i; otherwise it is incorrect. The solu-

tion to our problem will be all n's of xl,...x n such that P(xI....xn)

holds true.
The partially stated BACKTRACK program plan which has been adapted

to solve the problem of 27 cards now looks as follows:

pregran CARDS;
beglninput (n);

x.:=3n-4; i:, - ;
whie i 2, 1 do begin

while x, > (do begin
X.:-, - I;
f p(x, + I . x + I)
tMn if i-n

then print (xl,... x.)
elee i:-i*+l x,:-3n-2i-2"

end.

end
end

-8-

We can see that we can do without the sets Xi since we are assured

by the sequential reduction in the value of xi (which has been initialized

to the value of 3n-2i-2 prior to each plunge into the cycle) by one that

we will cover all the possible values that xi can acquire.

Thus, we are not "collecting" all the solutions in set B so that

we print them directly (the representative area - wlisting" - plays

the part of set B).

With the full "extension" of the CARDS program to some concrete

programing language (such as Pascal) we can also program the predicate

p. We can do this as a Boolean function, for example which has a game

field and memory coded into itself with an occupied field. We will re-

call that the efficiency of the entire program to a great extent depends

directly on the effective implementation of this predicate since the test

of its accuracy is determined in each cycle. This problem is not solely

concerned with the basic function of the scanning algorithm with backtrack

and for this reason, we will not deal with it further.

5. Conclusion

In the foregoing text, we have shown how to prove the total correct-

ness of programs by the intermittent assertions technique. While using

this method, total correctness of a program is expressed in the form of

a theorem:

THEOREM: When the opening condition is fulfilled at the point of

entry into the program, the solution is achieved at the end of the pro-

gram and at that point, the output condition is fulfilled.

This theorem states that the program is partially correct and, over

and above this, that it ends.

In order to prove the validity of this theorem for our program, we

must find an intermittent assertion at a specified point in the program

which asserts something about the chosen variables in the program that

also holds true when the solution to the problem passes through. The

connection between these assertions can be described by means of lemmas

from which proof of the validity of the main theorem must come.

In general, we will need one lemma which describes the intended

behavior of the cycle for each cycle in the program. This lemma general-

ly asserts that when the cycle ends, it aads what still remains to be

completed to what has currently been executed in the cycle.

The proof of these lemmas is generally worked out through complete

induction with the elements (variables) of a certain set which does not

contain any indeterminate non-declining series (the so-called "well-

founded set" - see Z57 or Z47).
The only, and therefore probably the greatest problem remains of

how to formulate the assertion of the theorem so that it expresses the

total correctness of the program and how to formulate the assertion of

the lemma so that it is possible to prove the theorem from then and also

so that we can prove the lemma independently.

This validates the "golden rule of proving programs", that is, the

better we think out the program, the easier it is for us to prove its

correctness. When we recognize the fact that the more intelligible a

program is, the simpler and shorter it is, we come to the next instruc-

tion on how to proceed with proving programs:

We start with the suggestion of a program that solves a given prob-

lem on the level of abstraction that we understand well and then, we can

move easily to formulate the assertion of the theorem and the secondarz len.2a

and to prove them. In a further step, we drop to a lower level of ab-

straction so that we make certain instructions in the program more spe-

cific and we can refine its structure. Then we come to the program

which differs only "slightly" from the original and therefore, the proof

of its correctness would have a resemblance "in its coarser features"

to the proof of the preceding program. This means that the "skeleton"

of the new proof is already made up and the proof requires only the "re-

finement" of certain assertions and arguments so that it is appropriate

to the new situation. Thus, we proceed along with the gradual refine-

ment of the program and proving its correctness and we do not work

towards a meaningful program which will solve a given problem and has

already been formulated in a specific and meaningful programming language.

It seems that in practice it is sufficient to "attain" proof of the
program's correctness when the program is at the "penultimate" level of

abstraction; that is, it is not necessary to come up with a proof of

correctness for the final program in a meaningful languange except when

the program is at the highest abstract level which, to some extent,

represents the most universal plan in the solution to our problem -

and the one from which we can achieve our meaningful program more or

less directly. During the final phase of firming up the program, only

the final simple functions which add to the program additional secondary

variables but which do not alter the control of the program are made

more specific. At the programming level, the experienced programmer

assumes this function and substantive errors introduced into the program

during this phase are found either by a good collator (differences

-10-

in types, parameters, indexes that "run past" the acceptable dimensions,

and the like) or they are quickly removed by the programmer during the

debugging process. The descriptive complexity of proof at this final

level would increase considerably and be greatly augmented by the proba-

bility of introducing error into the proof as well.

This reality supports (in addition to juC own experience) the empiri-

cal reconnaisance of programs Z37 where it has been shown that, in a num-

ber of cases, programs have been incorrect in spite of the fact that their

correctness has been proven. It was also shown, however, that error was

introduced into the program right at the final stage of making the program

concrete and that the proof "did not find" it but rather that the error

per se was removed during the first failure of the program.

From the above considerations, it is particularly apparent that

there is no need to prove programs in standard practice whose statement

at a "sufficiently" high degree of abstraction is at the same time a

concrete program in a meaningful language as well - the so-called "baby"

pragrams (looking for the maximum element in a field, testing the equality

of two fields, and the like, for example).

It is apparent that the method of constructing proof of correctness

in parallel to the structure of a program is useful in most of the known

methods for proving the correctness of programs. It also indicates /67

that proving the total correctness of programs is, in many cases, done

most simply by the technique of intermittent assertions rather than by

means of the "traditional" methods (Floyd's method of invariants and

derived techniques - Z4, 57).
Our proof of the correctness of the BACKTRACK program can serve as

an example of this if we compare it with the proof of the similar but
recursive program in /77 which was shown by the invariants technique.

In /67 it is shown again and again that proof by the technique of
intermittent assertions can never be as "cumbersone" as proof by means
of invariants since the invariants technique is only a special instance
of the intermittent assertions technique.

Acknowledgements. We would like to thank Dr. P. Ruzick and Dr. P. Vodov
who, through their interest in the problems of this article , contributed
immensely to getting it into its present form.

-1O-

BIBLIOGRAPHY

1. Bitner, J., Reingold, E.t Backtrack programming Techniques. Comm.
ACM, 18, 1975, Nr 2, pp 651-655.

2. Gardner, M.: Mathematical Games. Some new and dramatic demonstrations
of number theorems with playing cards. Scientific American, Vol. 231,
1974, No 5, pp 122-125.
tioerhrt of , moenpogrammin m.behdlr isvaE rnations on alblt napia

3.on Geoat mode, Yplogrtmin Lehobervais. oEE fallibiltins apona
Software Engineering, Vol. SE-2, 1976, No 3, pp 195 - 207.[

4. Gruska, J., Privara, I.: "Dokazovanie spravnosti programov" ZProving
the Correctness of Programs7 In: Zbornik seminara "SOPFSEM '76" ZAntho-
lo&-r from the ."SRSEM?76" Seminar7, Computer Research Center, Brati-
slava, 1976. pp 331-375.

5. '41anna, Z.: Mathematical. theory of computations (Computer Science
Series), McGraw-Hill, New York, 1974.

6. M!anna, Z., '1aldinger, R.: Is "sometime" sometimes better than "always"'
Intermittent assertions in proving program correctness. Report .'o.
STAN-CS-76-558, Stanford University, June 1976

7. Privara, I..- "Teoria a aplikacia formalnej semantiky programovacich
jazykov" LThe Theory and Application of ?ormal Semantics in Program-
.m~ng Languages7 (Vyskumna sprava "Efektivnost' algoritmov programova-
cich systemov 1.") LResearch report, "The Effectiveness of Algorithms
i.n Programming Systems, 1"7. Computer Research Center, Bratislava,
1976, pp 75 - 117.

PROGRAMMING AND PROVING CORRECTNESS OF THE BACKTRACK ALGORITHM

Stoki ng the eoimbinaaearial prtblems in practice we tokten findt urselves in a situalton where we ha~c
a1 L'erlain Ifinal),e eto ci eandidates ir the fortihklmmielutuaon and we* have In acitw from this set those
candidatc% thait fulfil ~a eertain onditioin is(the molutio. Algerithms solvIng this problem are called the
wi~nning ilgoriihm%. toccatime for finding all the uucn% they have to, scan the- whonle set of candidates.
I'he %:,ample it(the efficient scanning algovriihm - backtrack algorithm - shows the sysiematic

Lilmiiftioumfl of proigram where. toguither with the desekopment of the priogram. its torrctness is pro~ved.
1Ih%: tonal coirrtatnes oil the poram is prisWd by the method af intermitgeng Asertins.

-12-

